x(u, v) = u cos(v) y(u, v) = u sin(v) z(u, v) = c v
y = x tan(z/c)
g = 0
ds^2 = 1 du^2 + c^2 + u^2 dv^2
dA = sqrt(c^2 + u^2) du dv
K(u, v) = -c^2/(c^2 + u^2)^2
g_(uu) = 1 g_(vv) = c^2 + u^2
Γ | u | | | vv = -u Γ | v | | | uv = u/(c^2 + u^2) Γ | v | | | vu = u/(c^2 + u^2)
E(u, v) = 1 F(u, v) = 0 G(u, v) = c^2 + u^2
e(u, v) = 0 f(u, v) = -c/sqrt(c^2 + u^2) g(u, v) = 0
left double bracketing bar x(u, v) right double bracketing bar = sqrt(c^2 v^2 + u^2)
N^^(u, v) = (-(sin(v) c)/sqrt(u^2 + c^2), (cos(v) c)/sqrt(u^2 + c^2), -u/sqrt(u^2 + c^2))
minimal surfaces | right conoid | ruled surfaces