x(t) = a sec(t) y(t) = b tan(t)
x^2/a^2 - y^2/b^2 = 1
r(θ) = (a b)/sqrt(b^2 cos^2(θ) - a^2 sin^2(θ))
(for a hyperbola with center at the origin, semimajor axis a parallel to the x-axis, and semiminor axis b parallel to the y-axis)
algebraic | conic | parametric | quadratic
d = 2
e = sqrt(b^2/a^2 + 1)
p = b^2/sqrt(a^2 + b^2)
{(-sqrt(a^2 + b^2), 0), (sqrt(a^2 + b^2), 0)}
L = b^2/a
y = -(b x)/a ∨ y = (b x)/a
x = -a^2/sqrt(a^2 + b^2) ∨ x = a^2/sqrt(a^2 + b^2)