x(t) = (a cos(t))/(sin^2(t) + 1) y(t) = (a sin(t) cos(t))/(sin^2(t) + 1)
a^2 x^2 - a^2 y^2 - x^4 - 2 x^2 y^2 - y^4 = 0
r(θ) = a sqrt(cos(2 θ))
s = (a Γ(1/4)^2)/sqrt(2 π)
s(t) = a F(t|-1)
κ(t) = (3 sqrt(2) cos(t))/(a sqrt(3 - cos(2 t)))
m(t) = -(2 (csc(t) - 3 sin(t)))/(cos(2 t) + 5)
ϕ(t) = 3 tan^(-1)(sin(t))
left double bracketing bar x(t) right double bracketing bar = (a abs(cos(t)))/sqrt(sin^2(t) + 1)