n | 1 | x 2 | sqrt(x) 3 | x^(1/3)
n | 2 | 3 |
Re(n)>0, x = 0
n = 1, x = 0
n = 2, x = 0
n = 3, x = 0
n = 4, x = 0
n = 5, x = 0
{x element R : (x!=0 and 1/n element Z) or (0
d/dx(x^(1/n)) = x^(1/n - 1)/n
integral x^(1/n)dx = (n x^(1/n + 1))/(n + 1) + constant
x^(1/n) = sum_(ν=0)^∞ binomial(1/n, ν) (-1 + x)^ν
x^(1/n) = sum_(ν=0)^∞ c_ν (-1 + n)^ν for (c_0 = x and c_1 = -x log(x) and ν c_ν + (2 + 2 ν + log(x)) c_(1 + ν) + (2 + ν) c_(2 + ν) = 0)
(1 + z)^a = ( integral_(-i ∞ + γ)^(i ∞ + γ) (Γ(s) Γ(-a - s))/z^s ds)/((2 π i) Γ(-a)) for (0<γ<-Re(a) and abs(arg(z))<π)