(x - 1)^2/(-1 + x)
x^2/(x - 1) - (2 x)/(x - 1) + 1/(x - 1)
x - 1
x = 1
{x element R : x!=1}
{y element R : y!=0}
injective (one-to-one)
d/dx((1 - 2 x + x^2)/(-1 + x)) = 1
integral(1 - 2 x + x^2)/(-1 + x) dx = 1/2 (x - 2) x + constant
(1 - 2 x + x^2)/(-1 + x) = sum_(n=-∞)^∞ ( piecewise | -1 | n = 0 1 | n = 1) x^n
(1 - 2 x + x^2)/(-1 + x) = sum_(n=-∞)^∞ ( piecewise | 1 | n = 1 0 | otherwise) (-1 + x)^n