A q-series is series involving coefficients of the form (a;q)_n | congruent | product_(k = 0)^(n - 1)(1 - a q^k) | = | product_(k = 0)^∞ (1 - a q^k)/(1 - a q^(k + n)) | = | (a;q)_∞/(a q^n ;q)_∞ for n>=1, where (a;q)_∞ is defined as (a;q)_∞ = product_(k = 0)^∞(1 - a q^k).
Borwein conjectures | Dedekind eta function | Fine's equation | Jackson's identity | Jacobi identities | mock theta function | q-analog | q-binomial theorem | q-cosine | q-factorial | Q-function | q-gamma function | q-hypergeometric function | q-multinomial coefficient | q-Pochhammer symbol | q-series identities | q-sine | Ramanujan Ψ sum | Ramanujan theta functions | Rogers-Ramanujan identities