Get Math Help

GET TUTORING NEAR ME!

(800) 434-2582

By submitting the following form, you agree to Club Z!'s Terms of Use and Privacy Policy

    Home / Get Math Help

    Singular Value Decomposition

    Result

    M = U.Σ.V^†
where
M = (1 | 0 | -1
-2 | 1 | 4)
U = ((19 - sqrt(505))/(12 sqrt(1 + 1/144 (19 - sqrt(505))^2)) | (19 + sqrt(505))/(12 sqrt(1 + 1/144 (19 + sqrt(505))^2))
1/sqrt(1 + 1/144 (19 - sqrt(505))^2) | 1/sqrt(1 + 1/144 (19 + sqrt(505))^2))
Σ = (sqrt(1/2 (23 + sqrt(505))) | 0 | 0
0 | sqrt(1/2 (23 - sqrt(505))) | 0)
V = ((1/12 (19 - sqrt(505)) - 2)/sqrt(1 + (1/12 (19 - sqrt(505)) - 2)^2 + (4 + 1/12 (sqrt(505) - 19))^2) | (1/12 (19 + sqrt(505)) - 2)/sqrt(1 + (4 + 1/12 (-19 - sqrt(505)))^2 + (1/12 (19 + sqrt(505)) - 2)^2) | 1/sqrt(6)
1/sqrt(1 + (1/12 (19 - sqrt(505)) - 2)^2 + (4 + 1/12 (sqrt(505) - 19))^2) | 1/sqrt(1 + (4 + 1/12 (-19 - sqrt(505)))^2 + (1/12 (19 + sqrt(505)) - 2)^2) | -sqrt(2/3)
(4 + 1/12 (sqrt(505) - 19))/sqrt(1 + (1/12 (19 - sqrt(505)) - 2)^2 + (4 + 1/12 (sqrt(505) - 19))^2) | (4 + 1/12 (-19 - sqrt(505)))/sqrt(1 + (4 + 1/12 (-19 - sqrt(505)))^2 + (1/12 (19 + sqrt(505)) - 2)^2) | 1/sqrt(6))

    Back to List | POWERED BY THE WOLFRAM LANGUAGE