x(u, v) = a cos(u) sin(v) y(u, v) = a sin(u) sin(v) z(u, v) = a cos(v)
x^2 + y^2 + z^2 = a^2 and z<=a - h and 0
2
g = 0
S = 2 π a h
ds^2 = a^2 sin^2(v) du^2 + a^2 dv^2
dA = a^2 sin(v) du dv
x^_ = (0, 0, (3 (2 a - h)^2)/(4 (3 a - h)))
V = 1/3 π h^2 (3 a - h)
K(u, v) = 1/a^2
g_(uu) = a^2 cos^2(v) g_(vv) = a^2
Γ | u | | | uv = cot(v) Γ | u | | | vu = cot(v) Γ | v | | | uu = sin(v) (-cos(v))
E(u, v) = a^2 sin^2(v) F(u, v) = 0 G(u, v) = a^2
e(u, v) = a sin^2(v) f(u, v) = 0 g(u, v) = a
left double bracketing bar x(u, v) right double bracketing bar = a
N^^(u, v) = (cos(u) sin(v), sin(u) sin(v), cos(v))
algebraic surfaces | constant (Gaussian) curvature surfaces | quadratic surfaces | semialgebraic surfaces | surfaces of revolution