capsule | catenoid | infinite cone | closed cone | finite cone | conical frustum | infinite cylinder | closed cylinder | finite cylinder | ding-dong surface | double sphere | eight surface | elliptic torus | football surface | first funnel surface | Gabriel's horn | hemisphere | horn torus | one-sheeted hyperboloid | two-sheeted hyperboloid | ... (total: 37)
| parametric equations
catenoid | x(u, v) = a cos(u) cosh(v/a)
y(u, v) = a sin(u) cosh(v/a)
z(u, v) = v
infinite cone | x(u, v) = a u cos(v)
y(u, v) = a u sin(v)
z(u, v) = u
finite cone | x(u, v) = (a (h - u) cos(v))/h
y(u, v) = (a (h - u) sin(v))/h
z(u, v) = u
conical frustum | x(u, v) = (cos(v) (a (h - u) + b u))/h
y(u, v) = (sin(v) (a (h - u) + b u))/h
z(u, v) = u
infinite cylinder | x(u, v) = a cos(u)
y(u, v) = a sin(u)
z(u, v) = v
finite cylinder | x(u, v) = a cos(u)
y(u, v) = a sin(u)
z(u, v) = v
ding-dong surface | x(u, v) = a sqrt(1 - v) v cos(u)
y(u, v) = a sqrt(1 - v) v sin(u)
z(u, v) = a v
double sphere | x(u, v) = a cos(u) sin(v)
y(u, v) = a sin(u) sin(v)
z(u, v) = a cos(v)
eight surface | x(u, v) = a cos(u) sin(2 v)
y(u, v) = a sin(u) sin(2 v)
z(u, v) = a sin(v)
elliptic torus | x(u, v) = cos(u) (a cos(v) + c)
y(u, v) = sin(u) (a cos(v) + c)
z(u, v) = b sin(v)
football surface | x(u, v) = (a sqrt(1 - v^2/c^2) cos(u) (b - v^4/c^4 - v^2/c^2))/b
y(u, v) = (a sqrt(1 - v^2/c^2) sin(u) (b - v^4/c^4 - v^2/c^2))/b
z(u, v) = v
first funnel surface | x(u, v) = a u cos(v)
y(u, v) = a u sin(v)
z(u, v) = log(u)
Gabriel's horn | x(u, v) = v
y(u, v) = (a cos(u))/v
z(u, v) = (a sin(u))/v
hemisphere | x(u, v) = a cos(u) sin(v)
y(u, v) = a sin(u) sin(v)
z(u, v) = a cos(v)
horn torus | x(u, v) = a cos(u) (cos(v) + 1)
y(u, v) = a sin(u) (cos(v) + 1)
z(u, v) = a sin(v)
one-sheeted hyperboloid | x(u, v) = a sqrt(u^2 + 1) cos(v)
y(u, v) = a sqrt(u^2 + 1) sin(v)
z(u, v) = c u
two-sheeted hyperboloid | x(u, v) = a sinh(u) cos(v)
y(u, v) = a sinh(u) sin(v)
z(u, v) = (c u cosh(u))/sqrt(u^2)
kiss surface | x(u, v) = (a sqrt(1 - v) v^2 cos(u))/sqrt(2)
y(u, v) = (a sqrt(1 - v) v^2 sin(u))/sqrt(2)
z(u, v) = a v
lemon surface | x(u, v) = cos(u) (sqrt(R^2 - v^2) - r)
y(u, v) = sin(u) (sqrt(R^2 - v^2) - r)
z(u, v) = v
oblate spheroid | x(u, v) = a cos(u) sin(v)
y(u, v) = a sin(u) sin(v)
z(u, v) = c cos(v)
infinite paraboloid | x(u, v) = a u cos(v)
y(u, v) = a u sin(v)
z(u, v) = u^2
paraboloidal segment | x(u, v) = a sqrt(u/h) cos(v)
y(u, v) = a sqrt(u/h) sin(v)
z(u, v) = u
prolate spheroid | x(u, v) = a cos(u) sin(v)
y(u, v) = a sin(u) sin(v)
z(u, v) = c cos(v)
pseudosphere | x(u, v) = a sech(u) cos(v)
y(u, v) = a sech(u) sin(v)
z(u, v) = a (u - tanh(u))
pumpkin surface | x(θ, ϕ) = (a sin(ϕ) ((n + 1) cos(θ) - cos(θ (n + 1))))/n
y(θ, ϕ) = (a sin(ϕ) ((n + 1) sin(θ) - sin(θ (n + 1))))/n
z(θ, ϕ) = h cos(ϕ)
sphere | x(u, v) = a cos(u) sin(v)
y(u, v) = a sin(u) sin(v)
z(u, v) = a cos(v)
spherical cap | x(u, v) = a cos(u) sin(v)
y(u, v) = a sin(u) sin(v)
z(u, v) = a cos(v)
spheroid | x(u, v) = a cos(u) sin(v)
y(u, v) = a sin(u) sin(v)
z(u, v) = c cos(v)
torus | x(u, v) = cos(u) (a cos(v) + c)
y(u, v) = sin(u) (a cos(v) + c)
z(u, v) = a sin(v)
zone | x(u, v) = a cos(u) sin(v)
y(u, v) = a sin(u) sin(v)
z(u, v) = a cos(v)
| Cartesian equation | semialgebraic description
capsule | | (z - h/2)^2 + x^2 + y^2 = r^2 and z>h/2 or (h/2 + z)^2 + x^2 + y^2 = r^2 and z<-h/2 or -h/2<=z<=h/2 and x^2 + y^2 = r^2
infinite cone | z^2 = (x^2 + y^2)/a^2 |
closed cone | | x^2 + y^2 = (a^2 (h - z)^2)/h^2 and 0<=z<=h or z = 0 and x^2 + y^2<=a^2
finite cone | | x^2 + y^2 = (a^2 (h - z)^2)/h^2 and 0<=z<=h
conical frustum | | x^2 + y^2 = (a (h - z) + b z)^2/h^2 and 0<=z<=h
infinite cylinder | x^2 + y^2 = a^2 |
closed cylinder | abs(sqrt(x^2 + y^2) - a ((2 z)/h - 1)) + abs(a ((2 z)/h - 1) + sqrt(x^2 + y^2)) = 2 a | x^2 + y^2 = a^2 and 0<=z<=h or x^2 + y^2<=a^2 and z = 0 or z = h
finite cylinder | | x^2 + y^2 = a^2 and 0<=z<=h
ding-dong surface | x^2 + y^2 = (1 - z) z^2 |
double sphere | (-a^2 + x^2 + y^2 + z^2)^2 = 0 |
eight surface | a^2 (x^2 + y^2 - 4 z^2) + 4 z^4 = 0 |
elliptic torus | (a^2 (z^2/b^2 - 1) - c^2 + x^2 + y^2)^2 = 4 a^2 c^2 (1 - z^2/b^2) |
football surface | x^2 + y^2 = (a^2 (1 - z^2/c^2) (b - z^4/c^4 - z^2/c^2)^2)/b^2 |
Gabriel's horn | y^2 + z^2 = a^2/x^2 |
hemisphere | | x^2 + y^2 + z^2 = a^2 and z>=0
horn torus | (x^2 + y^2 + z^2)^2 = 4 a^2 (x^2 + y^2) |
one-sheeted hyperboloid | (x^2 + y^2)/a^2 - z^2/c^2 = 1 |
two-sheeted hyperboloid | (x^2 + y^2)/a^2 - z^2/c^2 = -1 |
kiss surface | x^2 + y^2 = 1/2 (1 - z) z^4 |
lemon surface | (r^2 - R^2 + x^2 + y^2 + z^2)^2 = 4 r^2 (x^2 + y^2) |
mushroom surface | (z^3 - a^3)^2 + (-a^2 + x^2 + y^2)^3 = 0 |
oblate spheroid | (x^2 + y^2)/a^2 + z^2/c^2 = 1 |
infinite paraboloid | z = (x^2 + y^2)/a^2 |
paraboloidal segment | | z = (h (x^2 + y^2))/a^2 and 0<=z<=h
piriform surface | a^2 (y^2 + z^2) - a x^3 + x^4 = 0 |
prolate spheroid | (x^2 + y^2)/a^2 + z^2/c^2 = 1 |
pseudosphere | z^2 = (a sech^(-1)(sqrt(x^2 + y^2)/a) - sqrt(a^2 - x^2 - y^2))^2 |
sphere | x^2 + y^2 + z^2 = a^2 |
spherical cap | | x^2 + y^2 + z^2 = a^2 and z<=a - h and 0