V = 1/3 π a^2 h (volume enclosed by capping the surface below assuming height h, radius a)
x(u, v) = (a (h - u) cos(v))/h y(u, v) = (a (h - u) sin(v))/h z(u, v) = u
x^2 + y^2 = (a^2 (h - z)^2)/h^2 and 0<=z<=h
2
S = π a sqrt(h^2 + a^2)
ds^2 = a^2/h^2 + 1 du^2 + (a^2 (h - u)^2)/h^2 dv^2
dA = a sqrt(((a^2 + h^2) (h - u)^2)/h^4) du dv
x^_ = (0, 0, h/4)
I = (1/20 (3 a^2 + 2 h^2) | 0 | 0 0 | 1/20 (3 a^2 + 2 h^2) | 0 0 | 0 | (3 a^2)/10)
K(u, v) = 0
(for a finite single-napped right cone with axis of symmetry along the z-axis, base in the z = 0 plane of radius a, and of height h)